Signal Optimization and Analysis Using PASSER V

Training Workshop

Nadeem Chaudhary, P.E.
Steven Venglar, P.E.
Chi-Leung Chu

Sponsored by TxDOT under Project 5-4020

Session 0: Preliminaries

• Self Introductions
• Workshop Objectives
• Workshop Outline
S0—Workshop Objectives

- Learn Use of PASSER V for Analysis and Optimization of Traffic Signals:
 - Isolated Signals
 - Isolated Diamond Interchanges
 - Diamonds + Adjacent Signals
 - Arterials and Sub-arterials

S0—Workshop Outline

- **S1:** Introduction to PASSER V
 - Features
 - Input Data Requirements
- **S2:** Isolated Signals
 - Review of Theory
 - Isolated Signal Exercise
- **S3:** Signal Systems
 - Review of Theory
S0—Workshop Outline (continued)

- S4: Diamond Interchange Exercise
 - Additional Discussion
- S5: Arterial Exercises
 - Analyze Simple Arterials
 - Review Additional Features
- S6: Diamond + Arterial Exercise
 - Coordinating Diamond with Adjacent Signals

S0—Workshop Outline (continued)

- S7: Workshop Conclusion
 - Multi-Arterial Network Case Studies
 - Question/Answer Session
 - Workshop Survey
Session 1: Introduction to PASSER V

- Background
- Features
- Input Data Requirements
- User Interface

S1 – PASSER V Background

- Funded by TxDOT and TTI
- Applications
 - Isolated Signals (Building Blocks)
 - Signalized Arterials
 - Isolated Diamond Interchanges
 - Diamond + Adjacent Signals
S1—PASSER V Features

- Graphic User Interface
 - Multiple Document Architecture
- New Delay/Traffic Model
- Can Coordinate Signals to Provide
 - Maximum Progression
 - Minimum Delay
- Graphic Time-Space Diagram

S1—Using PASSER V

- Draw the Facility
- Select Intersection or Link
- Enter Corresponding Data
- View Signal MOEs
- Analyze/Optimize Signal Systems
 - Select and Run Tool
 - View/Print Results
S1 – Tools in PASSER V

- PASSER II Optimizer
- PASSER III Optimizer
- GA-Based Optimizer
- Time-Space Diagram Generator
- Volume Analysis
- Delay Analysis

S1 – PASSER V Limitations

- Coordination Requires Same Cycle Length at All Signals
 - No Double-Cycling or Conditional Service
- Cannot Handle Following Cases
 - Network Optimization
 - Un-Signalized Intersections
Session 2: Isolated Signals

- Overview of Theory
- PASSER V Input Data Needs
- Input Data Considerations
- Signal Exercise

S2–Cycle vs. Delay and Capacity

- Critical Cycle Length, C_c
- Minimum-Delay Cycle Length, C_m
S2—Cycle vs. Delay and Stops

S2—Cycle Length vs. Delay
S2—Timing Isolated Signals

- Select Best Timings
 - Cycle
 - Splits (or max, min, gap setting)
 - Clearance Intervals

- To provide
 - Safe
 - Efficient Operation

S2—Safety Issues

- Space Conflicts Inside Intersection
 - Use of Split Phasing

- Minimum Greens
 - Based on Driver Expectancy

- Vehicle Clearance Intervals

- Pedestrian Requirements

- Yellow Trap
S2—Clearance Intervals

- Proper Settings Avoid a “Dilemma Zone”

<table>
<thead>
<tr>
<th>Speed mph (kph)</th>
<th>Yellow Change sec (level grade)</th>
<th>Red Clearance sec (60’ wide crossing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 (40)</td>
<td>2.84</td>
<td>2.18</td>
</tr>
<tr>
<td>35 (56)</td>
<td>3.57</td>
<td>1.55</td>
</tr>
<tr>
<td>45 (72)</td>
<td>4.31</td>
<td>1.21</td>
</tr>
<tr>
<td>55 (88)</td>
<td>5.04</td>
<td>0.99</td>
</tr>
<tr>
<td>65 (104)</td>
<td>5.78</td>
<td>0.84</td>
</tr>
</tbody>
</table>

S2—Pedestrians

\[G_p = (4 \text{ to } 7 \text{ seconds}) + \frac{\text{Distance}}{W} \]

Location of yellow + all red depends on policy as to allowing pedestrian flashing “DON’T WALK” to occur simultaneously with vehicular clearance.
S2—Yellow Trap

Demonstration of Lead-Lag “YELLOW TRAP”

S2—Yellow Trap (continued)

Dallas Phasing
S2—Best Isolated Operation

• What is Good Operation?
 ✓ Minimum Delay
 ✓ Shortest Queues per Cycle
 ✓ Minimum Stops
 ✓ Compromised Combination

• User Decides Based on Situation
 ✓ Approach Speeds
 ✓ Traffic Counts
 ✓ Driver Perception

S2—PASSER V Data Needs

• Turning Movement Counts (TMC)
 ✓ Collect 15-Minute Data and Calculate PHF
 ✓ AM, PM, and Off-Peak
 ✓ Collect Vehicle Mix Information

• Can Apply Growth Rates to Older Counts, as Long as Traffic Patterns Haven’t Changed
S2–PASSER V Data Needs (continued)

- Number of Lanes
- Lane Use
- Lane Widths
- Turn Bays and Lengths

S2–Input Considerations

- Left-turn Treatment
 - Number of Opposing Lanes
 - Overlapping Turning Paths (may need to split phase)
 - Type of Signal Heads (3, 4, or 5 Section)
- Pretimed, Semi-actuated, or Fully Actuated
- Priority or Preemption
S2—Performance Data

- Delay, Stops, Queue Information for Existing Conditions
- Collection Can Be Costly

S2—Isolated Signal Exercise

- Draw an Isolated Signal
- Enter Data
- Analyze
S2–NEMA Phase Numbering

NEMA Dual-Ring Phasing
(leading lefts, no overlap)

Main Street Lead-Lag,
Cross Street “Split Phased”

S2–Intersection Data

<table>
<thead>
<tr>
<th>AM</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>13</td>
</tr>
<tr>
<td>T</td>
<td>52</td>
</tr>
<tr>
<td>R</td>
<td>74</td>
</tr>
<tr>
<td>Truck%</td>
<td>2</td>
</tr>
</tbody>
</table>

Bay is 91' long

<table>
<thead>
<tr>
<th>AM</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>24</td>
</tr>
<tr>
<td>T</td>
<td>386</td>
</tr>
<tr>
<td>R</td>
<td>16</td>
</tr>
<tr>
<td>Truck%</td>
<td>3</td>
</tr>
</tbody>
</table>

Bay is 153' long

<table>
<thead>
<tr>
<th>AM</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>113</td>
</tr>
<tr>
<td>T</td>
<td>85</td>
</tr>
<tr>
<td>R</td>
<td>45</td>
</tr>
<tr>
<td>Truck%</td>
<td>8</td>
</tr>
</tbody>
</table>

Bay is 126' long

S. Presa

S.W. Military

N

S2–Data Entry

• Draw Links
• Define Lanes
• Enter PM-peak Volumes
 ✓ i.e., 149, 676, and 147 for EB
• Select Movement Type
 ✓ EB and WB Prot (why?)
 ✓ NB and SB Prot/Perm

S2–Data Entry (continued)

• Adjust Right-turn Volumes for RTOR
• Overlap (Yes for lefts)
• Min Splits
 ✓ Peds if No Buttons (Assumed)
 ✓ EB, WB, NB, SB: 23, 23, 29, 29
 ✓ Clearance Times
S2—Data Entry (continued)

- Adjustments to Flows
- Trucks
- Ideal Saturation Flow
- Click Update Button

S2—Analysis/Results

- Delay vs. Cycle Analysis
- Controller: Ring-Barrier Display
- MOEs
Session 3: Signal Systems

Overview:
✓ Engineering Theory
✓ Analysis Tools

S3—Flow Stability Between Adjacent Systems

Min. Acceptable System Cycle Length

Delay

Cycle Length

Signal 3: Highest v/c Ratio
Signal 2
Signal 1: Lowest v/c Ratio
S3—Signal Offset and Flow Between Adjacent Signals

S3—Flow vs. Bands
S3—Effects of Changes in Offset

Offset +

S3—Cannot Get Two-way Bands? Change Phasing!

Offset -
S3—Changing Phasing Can Improve 2-way Progression

Objectives of Coordination

- Provide/Maintain Safety
- Maintain Stable Flow
- Minimize Systemwide Delay
- Minimize Queues and Spillback
- Maximize System Throughput
- Minimize Number of Stops
- Maximize Arterial Progression
S3—Types of Models

- Traffic Simulation Model
 - Evaluates a Specified Scenario
 - Generates Performance Measures

- Optimization Model
 - Systematically Generates Scenarios
 - Evaluates Using Simulation
 - Selects the Best Scenario
 - Usually Applicable to Traffic Signals

S3—Simulation Models

- Microscopic
 - Keeps Track of Each Vehicle
 - Time Consuming

- Mesoscopic
 - Analyzes Flow Profiles
 - Faster Calculations

- Macroscopic
 - Analyzes Platoons
 - Fastest Calculations
S3—Simulation Models (continued)

- **Microscopic**
 - Keeps Track of Each Vehicle
 - Time Consuming

- **Mesoscopic**
 - Analyzes Flow Profiles
 - Faster Calculations

- **Macroscopic**
 - Analyzes Platoons
 - Fastest Calculations

- **Stochastic**

- **Deterministic**

S3—Simulation Accuracy

- **Realistic Queues**
 - Microscopic: CORSIM, Vissim, SimTraffic
 - Mesoscopic: new T7F, PASSER V, Synchro 6

- **Upward Queue Stack**
 - Mesoscopic: old T7F, S5 and P3
 - Macroscopic: P2, P4
S3—Spillback & Starvation

S3—Blocking and Starvation
S3—Blocking and Starvation (continued)

S3—Starvation May Not Be Bad (Unused Capacity)
S3—Optimization Criteria

- Maximize Arterial Progression
- Minimize Systemwide Delay
- Minimize Stops
- Minimize Queues
- Maximize Throughput
- Minimize Blocking and Spillback

S3—Optimization Methods

- Exhaustive Search
- Smart Search Techniques
 - Hill-climbing
 - Heuristic
 - Mathematical Programming
 - Genetic Algorithms
- Most Signal-Timing Programs Use a Combination
S3—Optimization Tool Types

Delay-Based
- Minimizes Delay (+Qs and Stops)
- Evaluates/Simulates Each Plan
- Examples:
 - TRANSYT 7F: Exhaustive, Hill-climbing, GA
 - Synchro: Exhaustive + Heuristic Search
 - PASSER III: Exhaustive Search
 - PASSER V: Exhaustive, GA

(continued)

Bandwidth-Based
- Maximizes Arterial Progression
 - Simple Objective Function
- Simulates Traffic After Optimization
- Examples:
 - PASSER II: Exhaustive and Heuristic
 - PASSER IV: Mathematical Programming
 - PASSER V: Exhaustive, Heuristic, GA
S3–PASSER V Data Needs

- Signal Spacing
- Link Speeds
- Types of Link

![Diagram of intersection spacing](image)

S3–Input Performance Data

- Speed, Travel Time, or Delay Information for Existing Conditions
- May Need to Measure Speed for Use in PASSER V
- Can Be Used to Calibrate or Validate Your Base Model
- Collection Can Be Costly
Session 4: Diamond Interchange Analysis

- Background and Operational Issues
- Diamond Exercise
 - Create Interchange
 - Apply Optimization Tools and View Output
 - PASSER III
 - GA-Based Optimizer
- Apply Other Tools
 - Volume Analysis
 - Time-Space Diagram
 - Delay Analysis

S4—Background on Diamonds

- Two Closely Spaced Intersections
- Flow Characteristics Very Different from Arterials
 - Significant Turning Traffic
- Types
 - Conventional (More than 800 ft)
 - Compressed (400-800 ft)
 - Tight (Less than 400 ft)
S4—Background on Diamonds

continued

- Often Experience Operational Problems
- Capacity Dependent On
 - Splits at Both Intersections
 - Queuing and Spillback
- TxDOT/Texas Diamond Controller
 - Basic Three-Phase
 - TTI Four-Phase
 - Separate Intersection Mode

S4—NEMA Phase Numbering

- \(\phi_3 \)
- \(\phi_4 \)
- Crossing Arterial
 - Overlap A (\(\phi_1 + \phi_2 \))
- \(\phi_2 \)
- \(\phi_1 \)
- Overlap B (\(\phi_5 + \phi_6 \))
- \(\phi_5 \)
- \(\phi_6 \)
- \(\phi_8 \)
- Left Side Frontage/Ramp
- Right Side Frontage/Ramp
- \(\phi_7 \)
- \(\phi_X - NEMA \) Phase
S4—Three-Phase Operation

- \[\text{Fixed Interval Transition} \]
- \[\text{Lead-Lead Phasing} \]
- \[\text{Phase Times and Offset Calculated Simultaneously} \]
- \[\text{Needs Larger Cycle} \]

S4—Four-Phase Operation

- \[\text{Fixed Interval Transition} \]
- \[\text{Left Hand Side Exterior Served} \]
- \[\text{Right Hand Side Exterior Served} \]
- \[\text{Fixed Interval Transition} \]
S4—Other Options

- Separate Intersection Control Under Diamond Mode
 - Restricted to Lead-Lead Phasing
 - Can Provide Ring-lag/Offset
- User Programmed Mode
 - Difficult Programming
 - Flexibility of Operation
- Use Two Controllers

S4—Phasing Selection Guidelines

- Conventional Diamonds
 - Three-Phase
 - Four-Phase Not Recommended
- Compressed Diamonds
 - Three-Phase with Short Cycle
 - Four-Phase
- Tight Diamonds
 - Four-Phase
 - Three-Phase for Light Traffic
S4–Diamond Exercise

- SH 6 (East Bypass)
- Harvey Rd.
- Protected + Permitted
- Speed = 40 mph
- Bay Length = 300 ft
- All lanes 12 ft

S4–Data Entry/Analysis

- Draw Links/Define Interchange
- Load Data
- Select Tool and Analyze
- Review Results
S4—How GA Works

- Randomly Generate Population
- Perform Reproduction Operation
 - Select Pairs/Parents, and Generate Offspring
- Evaluate Each Using Simulation
 - Note Population Has Doubled

S4—How GA Works (continued)

- Keep Best Half of New Population
- Perform Mutation Operation

Next Generation
S4—How GA Works (continued)

- Stop If
 - No Improvement Possible or Maximum Generations Reached
 - Report the Best Plan
- Else
 - Repeat Process

S4—More Tools in PASSER V

- Volume Analysis
- Time-Space Diagram
- Delay Analysis
Session 5: Arterial Analysis

- Arterial Exercise 1
 - Load and Review Data
 - Apply Various Tools
 - Review/Interpret Output

- Arterial Exercise 2
 - Review Additional Features
 - Creating and Working with Sub-nets
 - Phasing Options
 - Bandwidth-constrained Delay Minimization
 - Adjusting Bands

S5 - Arterial Exercise 1

*Assume all lanes at Somerset are 12' wide

New Laredo Highway
Bay is 145' long

SW Military
Bay is 140' long

Transportation Operations Group
S5–Arterial Exercise 2

S5–Band vs. Efficiency

- Total Band (sec)
- Total Efficiency (%)

Cycle Length

Band Width

Efficiency

90
80
70
60
50
45
40
35
30
25
20
15
10
5
0

0 10 20 30 40 50 60 70 80 90 100 110 120
S5–Delay and Attainability

S5–Tradeoffs in Performance
Session 6: Diamond and Adjacent Signals

- Exercise Using Existing Data
- Apply Various Tools
- Review Output

S6–SH 195 Data
Session 7: Workshop Conclusion

- Additional Topics and QA Session
 - Any Features Not Covered
 - Networks
- Survey
 - Tell Us How We Did
 - Feedback About PASSER V

TTI is Here to Help

- Nadeem Chaudhary
 - n-chaudhary@tamu.edu
 - (979) 845-9890
- Steve Venglar
 - s-venglar@tamu.edu
 - (210) 979-9411
- Chi-Leung Chu
 - clchu@tamu.edu
 - (979) 845-8408